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Abstract

We consider the preconditioned iterative solution of large dense linear systems, where the coefficient matrix is a

complex valued matrix arising from discretizing the integral equation of electromagnetic scattering. For some scattering

structures this matrix can be poorly conditioned. The main purpose of this study is to evaluate the efficiency of a class of

incomplete LU (ILU) factorization preconditioners for solving this type of matrices. We solve the electromagnetic wave

equations using the BiCG method with an ILU preconditioner in the context of a multilevel fast multipole algorithm

(MLFMA). The novelty of this work is that the ILU preconditioner is constructed using the near part block diagonal

submatrices generated from the MLFMA. Experimental results show that the ILU preconditioner reduces the number

of BiCG iterations substantially, compared to the block diagonal preconditioner. The preconditioned iteration scheme

also maintains the computational complexity of the MLFMA, and consequently reduces the total CPU time.
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1. Introduction

The electromagnetic wave scattering by three-dimensional (3D) arbitrarily shaped dielectric and con-

ducting objects can be obtained by finding the solution of an integral equation. The solution to electro-

magnetic wave interaction with material coated objects has applications in radar cross-section (RCS)

prediction for coated targets, printed circuit, and microstrip antenna analysis [14,29,31]. This problem can

be studied using integral equation solvers. For example, to calculate radar scattering by a conducting target

coated by dielectric material, the hybrid surface and volume integral equations (VIEs) can be used [18]. In
this case, a surface integral equation (SIE) is formed for the conducting surfaces and a VIE is formed for the

dielectrics. The integral equations are discretized into a matrix equation by the method of moments (MoM)

[18,21,30]. With this procedure, we obtain a linear system of the form

Ax ¼ b; ð1Þ

where the coefficient matrix A is a large scale, dense, and complex valued matrix for electrically large

targets.

The matrix equation (1) can be solved by numerical matrix equation solvers. Typical matrix solvers can

be categorized into two classes. The first class is the direct solution methods, of which the Gauss elimination
method is representative. The second class is the iterative solution methods, of which the Krylov subspace

methods are considered to be the most effective ones currently available [1,24]. The biconjugate gradient

(BiCG) method is one of the many Krylov subspace methods [15].

Direct solution methods are very expensive in both memory space and CPU time for large size problems.

For the Gauss elimination method the floating point operation count is on the order of OðN 3Þ, where N is

the number of unknowns (columns) of the matrix A. In contrary, the complexity of the BiCG type iterative

methods is on the order of OðN iterN 2Þ if the convergence is achieved in N iter iterations. The Krylov subspace

methods such as BiCG require the computation of some matrix–vector product operations at each itera-
tion, which account for the major computational cost of this class of methods. The fast multipole method

(FMM) speeds up the matrix–vector product operations when it is used to solve the matrix equation it-

eratively. The FMM approach reduces the computational complexity of a matrix–vector product from

OðN 2Þ to OðN 1:5Þ [11,12,22]. With the multilevel fast multipole algorithm (MLFMA) the computational

complexity is further reduced to OðN logNÞ [9,17,27,28].
It should be noted that a matrix problem involving N unknowns may be solved in CN iterNAx floating

point operations, where C is a constant depending on the implementation of a particular iterative method

[3,11,12,24], and NAx is the floating point operations needed for each matrix–vector multiplication. For
many realistic problems, N iter depends on both the iterative solver and the target properties (shape and

material). For example, a problem with an open-ended cavity needs much more number of iterations than

that with a solid conducting box of the same size. Since N iter is a proportional factor in the CPU counter, to

further reduce the total CPU time, it is necessary to reduce the number of iterations of the iterative solvers.

Hence preconditioning techniques, which may speed up the convergence rate of the Krylov subspace

methods, are needed in this application. There are various preconditioning techniques in existence, most of

them are developed in the context of iteratively solving linear equations involving large sparse matrices

[19,24].
In the MLFMA implementation, the global coefficient matrix A is not explicitly available. Thus the

strategy of extracting a sparsity pattern by dropping small magnitude entries from the dense coefficient

matrix to form a sparse matrix as a basis for constructing a preconditioner is not feasible. We propose to

use an incomplete lower–upper (ILU) triangular factorization with a dual dropping strategy (ILUT [23]) to

construct a preconditioner from the near part matrix of the coefficient matrix in the MLFMA imple-

mentation. The near part matrix is naturally available in the MLFMA. By not using a static (prespecified)

sparsity pattern, we hope to capture the most important (large magnitude) entries in the incomplete LU
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factorization, while not to consume a large amount of memory. This is achieved by dynamically dropping

small magnitude entries during the computation and by only allowing a fixed number of nonzeros kept in

each row of the L and U factors.

In our experimental study, we use the BiCG method as the iterative solver, coupled with three pre-

conditioning strategies to solve a few study cases of representative electromagnetic scattering problems. We

compare mainly the preconditioning effect of different strategies. The preconditioning strategies that we

consider are (a) no preconditioner (equivalent to using the identity matrix as the preconditioner), (b) the

block diagonal preconditioner, and (c) the incomplete LU triangular factorization preconditioner. We show
by numerical simulations that the BiCG method with the ILU preconditioner reduces the number of it-

erations significantly, compared to the cases with the block diagonal preconditioner as well as without a

preconditioner.

This paper is organized as follows. Section 2 gives a concise introduction to the hybrid integral equation

approach in electromagnetic scattering and the MLFMA. In Section 3, we outline the preconditioned BiCG

method and discuss in detail the ILUT preconditioner. Extensive numerical experiments with a few elec-

tromagnetic scattering problems are conducted in Section 4, and in Section 5, we explain and analyze the

numerical data obtained in our experiments. Some concluding remarks are given in Section 6.

2. Discretization of integral equation and fast multipole method

The hybrid integral equation approach combines the VIE and the surface integral equation (SIE) to

model the scattering and radiation by mixed dielectric and conducting structures [18,26]. For example,

when a radome is applied to an antenna, the combined system consists of both dielectrics and conductors.

Hence, the hybrid surface–volume integral equation is ideal for this problem [9]. The VIE is applied to the

material region (V) and the SIE is enforced over the conducting surface (S). The integral equations can be

formally written as follows:

fLSðr; r0Þ � JSðr0Þ þ LV ðr; r0Þ � JV ðr0Þgtan ¼ 
EinctanðrÞ; r 2 S;


E þ LSðr; r0Þ � JSðr0Þ þ LV ðr; r0Þ � JV ðr0Þ ¼ 
EincðrÞ; r 2 V ;

where Einc stands for the excitation field produced by an instant radar, the subscript ‘‘tan’’ stands for taking
the tangent component from the vector it applies to, and LX; ðX ¼ S; V Þ, is an integral operator that maps
the source JX to electric field EðrÞ and it is defined as

LXðr; r0Þ � JXðr0Þ ¼ ixlb

Z
X0

I
�

þ k
2b rr
�
Gðr; r0Þ � JXðr0ÞdX0:

Here Gðr; r0Þ ¼ eikbjr
r0 j=ð4pjr 
 r0jÞ is the 3D scalar Green�s function for the background media, and
i ¼

ffiffiffiffiffiffiffi

1

p
. It should be pointed out that E is related to JV in the above integral equations by

JV ¼ ixð�b 
 �ÞE. This results in a very general model as all the volume and surface regions are modeled
properly. The advantage of this approach is that in the coated object scattering problems, the coating

material can be inhomogeneous, and in the printed circuit and microstrip antenna simulation problems the

substrate can be of finite size. The simplicity of the Green�s function in both the VIE and the SIE has an
important impact on the implementation of the fast solvers. However, the additional cost here is the in-

crease in the number of unknowns since the volume that is occupied by the dielectric material is meshed.

This results in larger memory requirement and longer solution time in solving the corresponding matrix
equation. But this deficiency can be overcome by applying fast integral equation solvers such as the

MLFMA [9].
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We follow the general steps of the MoM to discretize the hybrid surface–volume integral equations. This

involves the following steps: (a) Use a collection of small patches to represent the surface S, and a collection

of small cells to represent the volume V. (b) Select a set of surface basis functions f S
n to expand the surface

current, and select a set of volume basis functions to expand the volume function ix�E. Since the volume
basis function we use is continuous across the cells, we assume ix�E to be the unknown function, from
which E and JV can be determined. (c) Substitute the approximate representation of the unknowns into the
integral equation, and test the resultant integral equation with a set of testing functions. As a result, the

hybrid integral equations are converted into a matrix equation that is formally written as

ZSS ZSV

ZVS ZVV

� �
� aS

aV

� �
¼ US

UV

� �
; ð2Þ

where aS and aV stand for the vectors of the expansion coefficients for the surface current and the volume
function, respectively [9,18], and the matrix elements can be generally written as

Zji ¼ ixlb

Z
X
dXf X

j ðrÞ �
Z

X0
dX0ðI þ k
2b rrÞGðr; r0Þ � vðr0Þf X0

i :

The material function vðr0Þ ¼ 0 if X0 is a surface patch, and v ¼ ð�=�b 
 1Þ if X0 is a volume cell. It can be

seen that the coefficient matrix arising from discretized hybrid integral equations is nonsymmetric. Once the

matrix equation (2) is solved by numerical matrix equation solvers, the expansion coefficients aS and aV can
be used to calculate the scattered field and RCS. In antenna analysis problems the coefficients can be used

to retrieve the antenna�s input impedance and calculate the antenna�s radiation pattern. In the following, we
use A to denote the coefficient matrix in Eq. (2), x ¼ ½aS ; aV �T, and b ¼ ½US ;UV �T for simplicity.
The basis function is an elementary current that has local support. To solve the matrix equation by an

iterative method, the matrix–vector multiplications are needed at each iteration. Physically, a matrix–vector

multiplication corresponds to one cycle of interactions between the basis functions. The basic idea of the

FMM is to convert the interaction of element-to-element to the interaction of group-to-group. Here a

Fig. 1. The sparse data structure of a dense matrix A from electromagnetic scattering. (a) The block diagonal part. (b) The block

diagonal and near-diagonal part.
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group includes the elements residing in a spatial box. The mathematical foundation of the FMM is the

addition theorem for the free-space scalar Green�s function [11]. Using the addition theorem, the matrix–
vector product Ax can be written as (see Appendix A)

Ax ¼ ðAD þ ANÞxþ VfKVsx; ð3Þ

where Vf , K, and Vs are sparse matrices. In fact, the dense matrix A can be structurally divided into three

parts, AD, AN, and AF ¼ VfKVs. AD is the block diagonal part of A, AN is the block near-diagonal part of A,
and AF is the far part of A. Here the terms ‘‘near’’ and ‘‘far’’ refer to the distance between two groups of
elements. Fig. 1 shows the sparse data structure of a partitioned dense matrix A from one of our examples,

the P1A case in Table 1. Fig. 1(a) shows AD, Fig. 1(b) shows AD þ AN, and the far part of A is scattered in
the rest of the area of Fig. 1(b).
To implement the FMM, the spatial region of all the basis functions are subdivided into small cubic

boxes. Then the scattered field of different scattering centers within a group are translated into a single center

called group center. This is the aggregation process. Hence, the number of scattering centers is reduced. If

two groups are separated far enough, the interactions between them are carried out through translation.

After the interactions among the groups are done, the field received by a group is redistributed to the group

Table 1

Information about the matrices used in the experiments (all length units are in k0, the wavelength in free-space)

Cases Level Unknowns Matrices Nonzeros Target size and description

P1A 4 816 A 665,856 6� 2
AD 25,122 Conducting plate

AD þAN 53,296

P1B 4 1416 A 2,005,056 2:98824� 2� 0:1
AD 66,384 Dielectric plate over conducting plate

AD þAN 155,616

S1A 4 4800 A 23,040,000 0:6� 0:2 �0:1
AD 514,196 Conducting sphere (partial)

AD þ AN 1,795,306

S1B 4 7576 A 57,395,776 0:62� 0:0747217� 0:12
AD 1,506,932 Conducting sphere with dielectric

coating (partial)

AD þAN 5,125,932

P2A 3 625 A 390,625 0:266� 0:116 �0:001587
AD 64,753 Microstrip antenna (no substrate)

AD þ AN 117,121

P2B 3 1683 A 2,832,489 0:266� 0:116 �0:001587
AD 441,479 Microstrip antenna

AD þ AN 773,181

S2A 4 10,800 A 116,640,000 5� 5� 5
AD 555,200 Large conducting sphere

AD þ AN 1,590,200

S2B 4 32,400 A 1,049,760,000 5:2� 5:2� 5:2
AD 5,382,304 Large sphere with dielectric coating

AD þ AN 14,756,720

P3A 7 100,800 A 10,160,640,000 22:25� 22:25
AD 3,571,808 Antenna array

AD þ AN 7,211,632
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members. This is the disaggregation process [27]. In the FMM, the matrix elements are calculated differently

depending on the distance between a testing function and a basis function. For near-neighbor matrix ele-

ments (those in AD and AN), the calculation remains the same as in the MoM procedure. However, those

elements in AF are not explicitly computed and stored. Hence they are not numerically available in the FMM.
It can be shown that with optimum grouping, the number of nonzero elements in the sparse matrices in Eq.

(3) are all on the order of N 1:5, and hence the operation count to perform Ax is OðN 1:5Þ.
If the above process is implemented in multilevel, the total cost (in memory and CPU time) can be

reduced further to be proportional to N logN for one matrix–vector multiplication. Due to this reduced
computational complexity, the memory and CPU time savings can be orders of magnitude compared with

the direct dense matrix multiplication methods of OðN 2Þ if N is very large [17,20].

3. Iterative methods and preconditioners

There have been a few preconditioning techniques recently developed for solving dense linear systems

arising from discretized integral equations in electromagnetic applications and in other applications [5,7].
Until recently, preconditioning techniques for solving dense matrices are less extensively studied [7],

compared to those for the sparse matrices. In the electromagnetic scattering simulation field, the diagonal

and block diagonal preconditioners are considered by a few authors [17,27,28] in the context of the

MLFMA. The individual blocks (of the block diagonal matrix) are numerically available and are easy to

invert. More recently developed strategies are related to the sparsity pattern based ILU factorization

preconditioning [25] and to sparse approximate inverse preconditioning [6]. Some of them are based on the

pattern of a sparsified coefficient matrix [2,4,6]. Others are constructed using the geometric or topological

information of the underlying problems [20,25]. Most of these preconditioning techniques, such as the
ILU(0), rely on a fixed sparsity pattern, obtained from the sparsified coefficient matrix by dropping small

magnitude entries. The ILU(0) preconditioner, which uses a static sparsity pattern and is constructed from

a sparsified matrix, is shown to be ineffective in some electromagnetic scattering problems [5]. On the other

hand, some sparse approximate inverse techniques need access to the full coefficient matrix (to construct a

sparsified matrix), which is not available in the FMM. In many cases, the sparse approximate inverse

techniques are far more expensive to construct than the ILU type preconditioning techniques. This is the

case when the inherent parallelism in constructing Frobenius-norm based sparse approximate inverse

preconditioners is not exploited.
We solve the dense linear system (1) by using the preconditioned BiCG method. We will evaluate two

preconditioners, the ILU preconditioner with a dual dropping strategy (a fill-in parameter and a drop tol-

erance) [23] and the block diagonal preconditioner, using the trivial identity matrix preconditioner as com-

parison.The blockdiagonal preconditioner for theMLFMA is implemented in [28].Due to space limit, wewill

not be able to evaluate other type of preconditioning techniques. The efficiency and examples of the ILU(0)

and some sparse approximate inverse preconditioners in the FMM implementation can be found in [20,25].

By the block diagonal preconditioning, we construct a preconditioner A
1
D from the block diagonal

matrix AD, and then apply the preconditioner A
1
D to the linear system (1). That is, A
1

D Ax ¼ A
1
D b: Since AD is

a block diagonal matrix, each individual block can be inverted independently.

By the ILU preconditioning, we construct a preconditioner M
1 from the ILU factorization of the near

part matrix ðAD þ ANÞ, and then apply the preconditioner M
1 to the linear system (1). That is,

M
1Ax ¼ M
1b:
It is well known that a simple preconditioner, such as the ILU(0), which uses the sparsity pattern of A,

may not be robust for solving some large scale ill-conditioned problems. Different high accuracy precon-

ditioners have been proposed for solving sparse matrices [8,23,24,32]. Many of them are constructed using

either an enlarged sparsity pattern or using some threshold value based drop tolerance to allow more fill-in
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in the construction phase. Some high accuracy ILU preconditioning strategies may not be able to control

the amount of memory space needed a priori. Since memory cost is of vital importance in large scale

electromagnetic scattering simulations, preconditioners using a lot of memory space are less useful.

Therefore, we resort to a particular ILU factorization strategy which uses a dual dropping strategy (ILUT)

to control both the computational cost and the memory cost. By using the ILUT, we anticipate to use not

very much more than the amount of the memory space used to store the near part matrix ðAD þ ANÞ. Thus
the memory and floating point operation complexity of the MLFMA is maintained.

The following algorithm of the ILUT factorization on a matrix A ¼ ðaijÞN�N is due to Saad and is ex-
tracted from [23,24].

Algorithm 3.1. The ILUT Algorithm

0. Set u1k ¼ a1k; k ¼ 1; . . . ;N
1. For i ¼ 2; . . . ;N , Do:
2. w ¼ ai�
3. For k ¼ 1; . . . ; i
 1 and when wk 6¼ 0, Do:

4. wk ¼ wk=ukk
5. Apply a dropping rule to wk

6. If wk 6¼ 0 then

7. w ¼ w
 wk � uk�
8. EndIf

9. EndDo

10. Apply a dropping rule to row w
11. li;j ¼ wj for j ¼ 1; . . . ; i
 1
12. ui;j ¼ wj for j ¼ i; . . . ;N
13. w ¼ 0

14. EndDo

In Algorithm 3.1, wk is a work array and ai� denotes the ith (current) row of the matrix A. The dual
dropping strategy of the ILUT is implemented using the two parameters s and p. The small entries of wk

(with respect to s and relative to a certain norm of the current row) are dropped in line 5. In line 10, small

entries are dropped again. A search algorithm is used to find out the largest p entries in magnitude. These p
largest entries are kept, the others are dropped again. The total storage is bounded by 2pN . Here s controls
the computational cost, and p controls the memory cost. By judiciously choosing the two parameters s and p,
we may be able to construct an ILU preconditioner that is effective and does not use much memory space.

When ILU factorization preconditioners are used in combination with an iterative process such as a
Krylov subspace method, they tend to dictate the convergence behavior more than the iterative process

itself [23,33]. In general, high accuracy ILU type preconditioners with a large amount of fill-in are more

robust but cost more in construction than their lower accuracy counterparts do [33,34]. Since an ILUT

preconditioner may be reused several times by solving the same matrices with several different right hand

sides in electromagnetic scattering simulations, its construction cost can be amortized. However, it is im-

portant to note that the memory space is usually a bottleneck in large scale electromagnetic scattering

simulations.

For completeness, we give the following algorithm of the preconditioned BiCG method with a pre-
conditioner M
1.

Algorithm 3.2. The Preconditioned BiCG Method

1. Compute r0 ¼ b
 Ax0. Choose r�0 such that ðr0; r�0Þ 6¼ 0.

2. Compute z0 ¼ M
1r0, z�0 ¼ ðM
1ÞHr�0.
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3. Set p0 ¼ z0; p�0 ¼ z�0
4. For j ¼ 0; 1; . . . ; until convergence, Do:
5. aj ¼ ðrj; z�j Þ=ðApj; p�j Þ
6. xjþ1 ¼ xj þ ajpj
7. rjþ1 ¼ rj 
 ajApj
8. r�jþ1 ¼ r�j 
 �aajAHp�j
9. zjþ1 ¼ M
1rjþ1
10. z�jþ1 ¼ ðM
1ÞHr�jþ1
11. bj ¼ ðrjþ1; z�jþ1Þ=ðrj; z�j Þ
12. pjþ1 ¼ rjþ1 þ bjpj
13. p�jþ1 ¼ z�jþ1 þ �bbjp

�
j

14. EndDo

In Algorithm 3.2, the initial guess is x0. Implicitly, the algorithm solves not only the original system (1)

but also a dual linear system AHx� ¼ b� with AH (the complex conjugate transpose of A) if an update for x�j is
included [24]. At each iteration, BiCG needs two matrix–vector products, one with A and one with AH .

4. Numerical experiments

In this section, we present a number of numerical examples to demonstrate the efficiency of the ILUT

preconditioner [23]. All cases are tested on one processor of an HP Superdome cluster at the University of

Kentucky. The processor has 2GB local memory and runs at 750MHz. The code is written in Fortran 77

and is run in single precision.
To demonstrate the performance of our preconditioned BiCG solver, we calculate the RCS of different

conducting geometries with and without coating. The geometries considered include plates, spheres, an-

tennas and antenna arrays. The mesh sizes for all the test structures are about one tenth of a wavelength.

The information describing the structures and the generated matrices is given in Table 1. The second

column entitled ‘‘level’’ indicates the number of levels in the MLFMA. In most cases, three or four levels

are used. For the largest case P3A, we have used seven levels. In Table 1 we also give the number of

nonzeros of the full matrix A, the block diagonal matrix AD, and the near part matrix (AD þ AN). Due to the
space limit, we only report a few numerical results in this section. More detailed computational results can
be found in a technical report [16].

There are two stopping criteria implemented in the code. One is the error-bound (residual norm), and the

other is the limit of the number of iterations. The error-bound is to reduce the 2-norm residual by 10
3, and

the limit of the maximum number of iterations is set as 2000.

Here are the explanations of the notations shown in the data tables.

• prec: the preconditioner used with the BiCG method:

� NONE: no preconditioner;

� BLOCK: the block diagonal preconditioner [17,27,28];
� ILUT: the incomplete LU preconditioner with a dual dropping strategy [23].

• s: the threshold drop tolerance used in ILUT.
• p: the fill-in parameter used in ILUT.

• ratiof : the sparsity ratio of the number of nonzeros of the L and U factors with respect to the number of

nonzeros of the full matrix A.

• ration: the sparsity ratio of the number of nonzeros of the L and U factors with respect to the number of

nonzeros of the near part matrix (AD þ AN).
• LUcpu: the CPU time in seconds for performing the incomplete LU factorization.
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• itnum: the number of the (preconditioned) BiCG iterations.

• itcpu: the CPU time in seconds for the iteration phase.

• sol: iterative solution quality, compared with the exact solution from the Gauss elimination (LUD) sol-

ver, or with the solution from the converged cases when the Gauss elimination solver cannot be used due
to the memory limit:

� same: converged within the given stopping criteria;

� diff: did not converge within the given stopping criteria.

We summarize our experimental results as follows:

1. For the class of the problems we tested, the block diagonal preconditioner improves the BiCG con-

vergence in only 3 (P1B, P2A, and P2B) out of the 9 cases. In the remaining 6 other cases, the block

diagonal preconditioner actually hampers the BiCG convergence. It is our conclusion that the block

diagonal preconditioner is not robust for solving this class of dense matrices arising from the com-
bined hybrid integral formulation of the electromagnetic scattering problems.

2. For almost all problems, the ILUT preconditioner improves the BiCG convergence significantly and

reduces the total CPU time substantially. Our tests show that the ILUT preconditioner is robust for

solving this class of dense matrices. We also see that different choices of the ILUT parameters s and p

may affect the convergence rate of the preconditioned iterative solver.

(a) (b)

Fig. 2. The P1A case: ILUT (s ¼ 10
6, p ¼ 30). (a) Solution comparison. (b) Convergence history.

Table 2

Comparison of solving the P1A case using different preconditioners

prec s p LUcpu ratiof ration itnum itcpu sol

NONE 1153 97.75 same

BLOCK 0.03773 1265 107.02 same

ILUT 10
6 30 0.06 0.07429 0.92817 39 3.51 same

25 0.06 0.06263 0.78252 64 5.55 same

10
5 30 0.07 0.07427 0.92789 39 3.48 same

25 0.05 0.06263 0.78248 59 5.16 same

10
4 30 0.05 0.07423 0.92735 40 3.60 same

25 0.06 0.06259 0.78201 71 6.22 same

10
3 30 0.06 0.07384 0.92253 40 3.65 same

25 0.06 0.06229 0.77826 66 5.86 same
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3. It is worth pointing out that the memory cost of the ILUT preconditioner is reasonable. In most cases,

the memory cost of the ILUT preconditioner is less than the cost of storing the near part matrix

ðAD þ ANÞ, see the data in the column entitled ration in each table.
4. For most problems, the computation (construction) cost (LUcpu) of the ILUT preconditioner is low,
compared to the preconditioned iterative solution cost (itcpu). The exceptions are found in the S1B
and S2B cases. These two cases are related to modeling conducting spheres with dielectric coating.

5. For the converged cases, the approximate solutions computed from the preconditioned BiCG solver

are comparable to those computed from the direct solver.

6. The accuracy of the computed solutions is affected by the level of the MLFMA.

Table 3

Numerical data for comparing different preconditioners (s ¼ 10
3 in ILUT)

Cases prec p LUcpu ratiof ration itnum itcpu sol

P1B NONE 2000 223.20 same

BLOCK 0.03311 1526 170.80 same

ILUT 30 0.32 0.04249 0.54748 40 4.88 same

25 0.27 0.03564 0.45921 72 8.62 same

20 0.26 0.02868 0.36958 176 20.79 same

S1A NONE 984 488.21 same

BLOCK 0.02232 2000 1022.25 diff

ILUT 300 16.15 0.12130 1.55673 102 84.52 same

250 12.60 0.10184 1.30698 187 146.45 same

S1B NONE 2000 1628.88 same

BLOCK 0.02626 2000 1685.78 diff

ILUT 500 198.16 0.12426 1.39138 69 117.64 same

450 176.90 0.11354 1.27131 84 139.37 same

P2A NONE 1057 9.19 same

BLOCK 0.16577 107 0.97 same

ILUT 60 0.12 0.18056 0.60220 18 0.39 same

55 0.12 0.16749 0.55860 23 0.44 same

50 0.11 0.15410 0.51395 29 0.54 same

P2B NONE 2000 110.13 diff

BLOCK 0.15586 199 12.86 same

ILUT 100 2.08 0.11447 0.41934 38 3.88 same

90 1.67 0.10352 0.37922 37 3.82 same

80 1.58 0.09249 0.33885 65 6.09 same

S2A NONE 317 873.65 same

BLOCK 0.00476 2000 5530.08 diff

ILUT 200 58.07 0.03683 2.70144 148 489.32 same

150 38.68 0.02776 2.03594 224 702.20 same

S2B NONE 690 3451.20 same

BLOCK 0.00513 2000 10281.66 diff

ILUT 300 3274.14 0.01845 1.31277 237 1756.59 same

200 2236.59 0.01234 0.87819 286 1909.51 same

P3A NONE 423 3018.69 same

BLOCK 0.00227 625 4573.53 same

ILUT 30 114.10 0.00355 0.77342 41 324.07 same

20 112.70 0.00251 0.54629 45 347.90 same

10 111.40 0.00137 0.29736 277 2060.10 same
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The solution graphs indicate the scattering pattern of the objects. If the number of unknowns are over

10,000 then we did not try to get the exact solution from the LUD decomposition because it is too time

consuming.

Fig. 2(a) shows that the solutions of the P1A case computed with all three preconditioning strategies are

similar and approximate to the exact solution. Fig. 2(b) demonstrates that the BiCG method with the block

diagonal preconditioner converges more slowly than that without a preconditioner. This phenonmenon will

be explained in Section 5. But the ILUT preconditioner is the most efficient one. More detailed comparisons

can be found in Table 2, in which the ILUT with different s and p parameters are examined, and compared
with the block diagonal preconditioner, and with the case without a preconditioner. The ILUT with a range

of parameter choices performs quite well in this test.

Test data in Table 3 indicate that the high accuracy ILUT preconditioner with more fill-in is shown to be

more robust and more efficient. We also see that the sparsity ratio ration of the ILUT in most cases is less
than 1 or very close to 1. The ILUT preconditioner with a suitable pair of s and p parameters does not need
a large amount of memory space. Thus, the memory and floating-point operation complexity of the

MLFMA in each iteration is maintained. Since the number of iterations of the BiCG is decreased signif-

icantly using the ILUT, the total simulation time is reduced substantially.
Almost in all cases, the convergence behavior graphs (see Figs. 2(b) and 3) show that the BiCG method

with the ILUT preconditioner converges very fast with a small number of iterations, compared to that with

the block diagonal preconditioner and without a preconditioner.

In Table 4, we test the ILUT with a few parameters to work with the MLFMA with different levels for

solving the S1A case. As the level of the MLFMA decreases, we find that the number of nonzeros in the

near part matrix increases significantly. In fact, it is necessary to allow more fill-in entries in the ILUT

(a) (b)

Fig. 3. Convergence history comparison in two test cases. (a) The P2B case, ILUT (s ¼ 10
6; p ¼ 100). (b) The P3A case, ILUT

(s ¼ 10
6; p ¼ 30).

Table 4

Test results of the ILUT with different level of the MLFMA for solving the S1A case

s p Level Nonzeros ratiof ration itnum itcpu

10
6 300 4 1,795,306 0.12131 1.55685 103 87.15

10
6 500 3 6,366,904 0.19787 0.71605 116 153.27

10
6 500 2 14,114,642 0.19788 0.32300 243 496.83
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(a)

(b)

(c)

Fig. 4. The solution accuracy based on the MLFMA level and the error-bound (S1A): (a) level 4, error-bound 10
3; (b) level 4, error-

bound 10
6; (c) level 2, error-bound 10
3.
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factorization to maintain good convergence, as the level of the MLFMA reduces. This is because the ac-

curacy of the ILUT depends upon the relative amount of fill-in entries kept.

Fig. 4 shows the relations between the level of the MLFMA and the accuracy of the computed solutions.

The ILUT preconditioned solutions are getting closer to the exact solutions as the number of the MLFMA

level decreases. It is well known that the MLFMA is an approximation method [11]. As the number of level

increases, the accuracy of the MLFMA approximation decreases. Fig. 4 demonstrates that the error-bound

of the preconditioned iterative method used to solve the linear system does not have much effect on the

accuracy of the computed solution.

5. Computational analysis

The convergence behavior of the Krylov subspace methods depends on the distribution of the eigen-

values and on the condition number of the coefficient matrix. Eigenvalues tightly clustered around a single

point (away from the origin) provide fast convergence. While widely spread eigenvalues, especially around

the origin, cause the convergence to be very slow. This is because a low degree polynomial with the value 1
at the origin cannot be small at a large number of such points [13,24].

Our experimental data in the previous section can be explained based on these theoretical facts. In Table

5, we report the largest and the smallest eigenvalues in magnitude of the original and the preconditioned

matrices, and the condition number of the eigenvector matrices in the P1A case. According to [13,24], we

can only link the convergence rate of GMRES (not BiCG) with the condition number of the eigenvector

matrix X. For a given (diagonalizable) matrix A, it can be decomposed as A ¼ XRX
1, where

R ¼ diagfk1; k2; . . . ; kng is the diagonal matrix of the eigenvalues and X is the matrix of the eigenvectors of

the matrix A. The condition number of the eigenvector matrix X measures the normality of the matrix A.
Although existing theoretical result is not for BiCG, it can be used to explain the convergence of the Krylov

subspace methods (including BiCG) heuristically.

The condition number of the eigenvector matrix of the original dense matrix A is relatively large. The

smallest magnitude eigenvalues of the original matrix (see Table 5 and Fig. 5(a)) are near the origin and

they are almost spread on the negative side. The convergence of the BiCG method on the original matrix is

slow.

The block diagonal preconditioned matrix (ðADÞ
1A) makes the spectrum spread around the origin (see

Fig. 5(b)). This makes the preconditioned matrix more indefinite. These features cause a slow convergence
of the BiCG method on the block diagonal preconditioned matrix. However, the eigenvalue decomposition

shows that the condition number of the eigenvector matrix is smaller than that of the original matrix.

The ILUT preconditioned matrix (ðLUÞ
1A) is not like the block diagonal preconditioned matrix. Ei-
genvalues of the ILUT preconditioned matrix are shifted to the right-hand side of the origin and they are

away from zero. They are also clustered around 1. This is clearly shown in Fig. 5(c). The smallest eigenvalue

in magnitude has the real part of 0.4816, see Table 5. In addition, the condition number of the eigenvector

matrix X is significantly decreased (the ILUT preconditioned matrix is close to normal). These explain the

good convergence behavior of the BiCG method on this ILUT preconditioned matrix.

Table 5

Extreme eigenvalues and conditioning information of the matrices in the P1A case

Matrices klargest ksmallest condðX Þ

A 
0:0768
 18:0300i 0.0527i 531.2743

ðADÞ
1A 6:7660þ 0:1193i 
0:1861
 0:0020i 37.2237

ðLUÞ
1A 4:3659þ 0:2492i 0:4816þ 0:0126i 9.9971
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(a)

(b)

(c)

Fig. 5. Clustering of the eigenvalues in the P1A case: (a) eigenvalues of A; (b) eigenvalues of ðADÞ
1A; (c) eigenvalues of ðLUÞ
1A.

J. Lee et al. / Journal of Computational Physics 185 (2003) 158–175 171



Accuracy and stability of the ILUT factorization. If the sparsity ratio ration of the ILUT preconditioner is
very small the preconditioned BiCG iteration may not converge within the given stopping criteria or di-

verge. There are two possible reasons for the ILU type preconditioners to perform poorly for solving

certain type of matrices. Of course, if the ILU preconditioner is not accurate, such as using large s values
and small p values in the ILUT preconditioner, the preconditioning matrix M is a poor approximation to

the near part matrix ðAD þ ANÞ (or to the coefficient matrix A). It is expected that the preconditioning effect
of these poor quality ILU preconditioners is not good. Such poor quality ILU preconditioners due to

insufficient amount of fill-in can usually be improved by allowing more fill-in, i.e., by choosing a smaller
value of s and a larger value of p in the ILUT implementation (see Table 6).
Poor preconditioning quality can also come from an unstable factorization, which is usually associated

with small pivots encountered in the ILU factorizations [10,35]. Small pivots usually produce the L and U

factors with large magnitude entries, which make the relatively small magnitude entries of the matrix A

insignificant in finite precision computations. In sparse matrix computations, such problems can happen

when performing ILU factorization on indefinite matrices [10,35].

In constructing an ILUT preconditioner for a dense matrix, we use single precision arithmetic to cope

with the large amount of floating point operations and storage requirement. If the condition number of the
matrix M
1 ¼ ðLUÞ
1 is large, say, on the order of 107, computations in such a precision with the matrix
M
1 is likely to be inaccurate. The preconditioned matrix M
1A might be worse conditioned than the

original matrix A. In this situation, the preconditioned BiCG method may take more iterations to converge

or may not converge at all. On the other hand, due to the implementation in which we stop the iteration

when the (preconditioned) residual norm is reduced by 10
3, it is possible that the initial residual norm is

huge. Convergence might happen even if the actual residual norm is still large, if the initial residual norm is

large. Such a convergence is called a false convergence.

To distinguish a false convergence from a true convergence, or to determine if a preconditioner might be
effective before a preconditioned iteration procedure is carried out, it is informative to estimate the con-

dition number of the ðLUÞ
1 matrix. Chow and Saad propose to estimate this number by calculating

jjðLUÞ
1ejj1 where e is the vector of all ones. This statistics quantity is called condest in [10]. We note that

this statistics is also a lower bound for jjðLUÞ
1jj1 and indicates a relation between the unstable triangular

solutions and the poorly conditioned L and U factors [10,35]. The computation of the quantity kðLUÞ
1ek1
is just one forward solution step and one back substitution step with the L and U factors.

We calculate the condest numbers for the P1A case, in order to investigate what might happen with

the ILUT factorization in solving a complex valued dense matrix. We find that the drop tolerance value
s (in the range of our studies) does not affect very much the value of condest. Condest value mostly
depends on the fill-in parameter p. As the fill-in parameter p decreases and the drop tolerance parameter

s increases, the value of condest increases a lot in certain situations. We also find that the values of

Table 6

Condest values of the ILUT preconditioner for solving the P1A case

s p Condest itnum Convergence sol

10
6 30 26.49327 39 Yes same

25 216.1559 64 Yes same

20 892906.2 77 Yes diff

15 7.83125E+09 2 Yes diff

10 3.17522E+19 – Diverge –

10
3 30 26.43517 40 Yes same

25 188.4772 66 Yes same

20 192372.5 52 Yes diff

15 7.68935E+09 2 Yes diff
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condest are related to the solution patterns. If condest is very large, the preconditioned BiCG method

does not converge within the given stopping criteria or diverges and the computed solution is not good,

as we see in Table 6.

In Table 6, the ILUT with p ¼ 15 and s ¼ 10
6 converges in 2 iterations, but the computed solution is

not good. This is an example of a false convergence. We can determine the quality of this ILUT precon-

ditioner without even starting the BiCG iteration process. The condest value of 7:83125� 109 indicates that
any single precision computation with ðLUÞ
1 is likely to be inaccurate.

6. Conclusions

In the implementation of the MLFMA, the ILU preconditioners based on a dual dropping strategy

(ILUT) has been shown to reduce the number of the BiCG iterations dramatically, compared to the block

diagonal preconditioner and without a preconditioner. Solving the large complex valued dense linear

system arising from electromagnetic scattering using the BiCG method with an ILU preconditioner

maintains the computational complexity of the MLFMA, and consequently reduces the total CPU time.
According to the results from our numerical experiments, we can see that the ILUT preconditioner

constructed from the near part matrix improves the computational efficiency in the sense of both memory

and CPU time. The results show that the BiCG method with the ILUT preconditioner is robust for solving

3D model cases from electromagnetic scattering simulations.

One advantage of our implementation is that we do not need access to the global matrix to construct our

preconditioner (ideal for the MLFMA in which only AD and AN are numerically available). This is in

contrast to many existing preconditioning techniques either in the incomplete LU factorization forms or in

the sparse approximate inverse forms, in which a sparsified global matrix may be needed to construct a
preconditioner [2,5].

We conducted a few experimental analysis in order to understand the properties of the ILUT precon-

ditioned matrices. Our studies indicate that the eigenvalues of the ILUT preconditioned matrix are tightly

clustered around 1, which ensures the fast convergence of the preconditioned BiCG method.

We discussed the situations that inaccurate or unstable ILUT preconditioners may be computed. We

proposed to use a simple condest value to predict the quality of a constructed ILUT preconditioner before

the preconditioned BiCG iteration is started. Our experimental results indicate that this strategy is prac-

tically useful in predicting false convergence and divergence of the preconditioned iterative solvers.

Appendix A. FMM formulation

The addition theorem for the 3D scalar Green�s function is given by [9,11]

eikbjxþyj

jxþ yj ¼
Z
d2k̂k eikbk̂k�xaðk̂k; yÞ; jyj > jxj;

where

aðk̂k; yÞ ¼ ikb
4p

XL

l¼0
ilð2lþ 1Þhð1Þl ðkbjyjÞPlðk̂k � ŷyÞ:

Let r and r0 be the field point and the source point, respectively, the testing function fj belongs to group-
m centered at rm, and the basis function fi belongs to group-n centered at rn. Let x ¼ ðr 
 rmÞ þ ðrn 
 r0Þ,
y ¼ ðrm 
 rnÞ, then r 
 r0 ¼ xþ y. If group-m and group-n are well-separated, we have jyj > jxj, then
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Gðr; r0Þ ¼ eikbjr
r0 j

4pjr 
 r0j ¼
1

4p

Z
d2k̂k eikbk̂k�ðr
rmþrn
r0Þaðk̂k; rmnÞ;

where rmn ¼ rm 
 rn. Substituting this expansion into the expression for the matrix element, we have

Zji ¼
ixlb

4p

Z
dk̂kVfmjðk̂kÞ � amnðk̂kÞ � Vsniðk̂kÞ;

where

Vfmjðk̂kÞ ¼ ðI 
 k̂kk̂kÞ
Z

X
dXf X

j ðrÞeikbk̂k�ðr
rmÞ;

Vsniðk̂kÞ ¼ ðI 
 k̂kk̂kÞ
Z

X0
dX0vðr0Þf X0

i ðr0Þe
ikbk̂k�ðr0
rnÞ:

The matrix–vector multiplication for the nonnear part of
P

i Zjiai can be written in a matrix format as
VfKVs, which is the second part on the right-hand side of the Eq. (3).
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